翻訳と辞書 |
Great dodecicosahedron : ウィキペディア英語版 | Great dodecicosahedron
In geometry, the great dodecicosahedron is a nonconvex uniform polyhedron, indexed as U63. Its vertex figure is a crossed quadrilateral. It has a composite Wythoff symbol, 3 5/3 (3/2 5/2) |, requiring two different Schwarz triangles to generate it: (3 5/3 3/2) and (3 5/3 5/2). (3 5/3 3/2 | represents the ''great dodecicosahedron'' with an extra 12 pentagons, and 3 5/3 5/2 | represents it with an extra 20 triangles.) Its vertex figure ''6.10/3.6/5.10/7'' is also ambiguous, having two clockwise and two counterclockwise faces around each vertex. == Related polyhedra ==
It shares its vertex arrangement with the truncated dodecahedron. It additionally shares its edge arrangement with the great icosicosidodecahedron (having the hexagonal faces in common) and the great ditrigonal dodecicosidodecahedron (having the decagrammic faces in common).
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Great dodecicosahedron」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|